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ABSTRACT
This report describes a test of the robustness of

factor-analytic methods in the face of various types of scale
transformations on the data. Because of the complexities that would
be involved in an exact analytical investigation, the tests were done
with simulated sets of data having different factor structures. After
factor analyzing the original data sets, scale transformations were
done, and the transformed data sets were factor analyzed. Comparisons
made between results obtained before and after transformations lead
to the conclusion that monotonic transformations do not alter the
results, while nonmonotonic transformations may. Because the
comparisons were made with only a small number of data sets, it is
suggested that special choices of data, factor-analytic methods, or
scale transformations may limit the validity of this conclusion.
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Larsson, B. The influence of scale transformations: A study of
factor analysis on simulated data. Didakometry (Malmd, Sweden:
School of Education), No, 40, 1974.
Data with different factor structures are generated and analyzed.
The variables are transformed and reanalyzed and comparisons
between factor analyses before and after transformation are made.
All comparisons indicate the same conclusion: monotonic transforma-
tions do not change the results, while non-monotonic transformations
may . Special choices of data, factor-analytic method, transforma-
tions and ways of comparison may limit the validity of this conclusion.
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INTRODUCTION

Educational research uses many concepts which are not unequivocally
defined. This has involved different variables to measure the (nominally)
same property. Relations between these are almost always stochastic,
ranging from complete independence to the maximal correlation "allowed"
by their reliab:lities. Since several variables, proposed to measure the
same property, are seldom congeneric and often not even isomorphic in
their specific true scores, they can hardly be said to measure the same
property.

However, from a practical viewpoint, it need not be important that
variables measure exactly the same property. It is more important that
they represent the same property to a sufficient extent. By this I mean
that the same result is obtained by different collections of variables,
which are considered to measure the same properties, when they are
used on the same or similar measurement objects. This is a vaguely
formulated but important principle, Above all it means that a researcher
drzlws the same conclusions, generates the same hypotheses and makes
the same decisions, independent of which collection of variables they results
are based on. At the present state of educational measurements it is,
no doubt, of importance to investigate the robustness of results based on
different collections of variables. Such studies can never he definitive,
but this report tries to give some results relevant to the question of
robustness.

These investigations can be performed in different ways; one can use
real data or simulated data or one can make a purely analytical (mathe-
r,atical) 'restigation. Real data have the advantage of permitting concrete
interpretations. The drawback is that you, as a rule, must take data
already collected, which often are designed for quite another purpose.
It is considerably simpler to make a systematic investigation by simulating
data, since data can be chosen almost without restriction. However, the
amount of data, which can be reasonably analyzed, limits the pc,ssii)ility
of generalizing from simulation experiments. An analytical investigation
is here superior, since it is not based upon special data. Owing to complex
problems, analytical investigations are not always feasible.

I have chosen to study the influence of some transformations or. factf::r-
analyticat results. As an example, suppose that results of factor ,Lrialvsis
are robust to monotonic transformations. It would then seem to mc, that the
scale probiein of the instruments chosen is not very urgent, providc2c1 that



the properties are defined sufficiently well to determine ordinal measure-
ments. Strictly speaking, this study investigates only the robustness of
allocating different numbers to the possible outcomes of a certain collection
of instruments. But since functions can approximate stochastic relations
this report also mirrors, more or less, the robustness of results based on
different collections of instruments.

The present report comprises simulations only. In my opinion, it
would have been better to make an analytical investigation. However, the
complexity of the problems is clearly too great for me - I do not even
know how the.y should be formulated. Simulation is a solution which can be
resorted to when an analytical investigation does not seem possible. The
results of this report therefore constitute no rigid proof either for or
against factor-analytical robustness to transformations: they can only make
it more or less credible,

DESIGN OF THE EXPERIMENT

Thurstone (1947, p. 369) says that comparisons have shown that different
monotonic transformations give essentially the same factor structure,
when this is a simple structure, However, he does not show any results.
His statement is, in a sense, corroborated by his box example, which
can be found in several places in his book. If one knows that a collection
of variables satisfies the linear factor model, then monotonic transforma-
tions of these variables cannot satisfy the model in the same way. The
variables of the box example are different measurements of boxes, which
often are non-linear functions of height, length and breadth. In spite of
this, factor loadings of the rotated factors give support for the above-
mentioned dimensions. Thus, there are certain reasons to assume the
robustness of factor analysis, at least to monotonic transformations.

As a further support for the same presumption, one may add the
following simple, analytic result. Suppose that yt and y2 have a hivariate
normal distribution with expected values ut and p.2, variances 11 and a2

and correlation Then
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Here = crip., the coefficient of variation, and e 2 shall have the same
YY2

sign as µ1e . As ir usually lies in the interval (0. 0, 0.5) for variables
within behavioural research, a quadratic transformation has little effect
on e. . One dare assume that such a transformation hardly changes results
or factor analysis on approximately normally distributed variables. It
should be pointed out that y2 is here not a strictly monotonic transformation,
since - n < y <1) The extreme case z 2

= [(y - p.)/cr] 2 is clearly non-
monotonic and formulas t and 2 show that e a 0 independent of e,

2
ziy2

and e 2 2 = e . This indicates that non-monotonic transformationsz z
1 2

drastically can change the factor structure.
A number of collections of variables with known factor structures have

been generated. Then these have been transformed in different ways and
factor analyses before and after transformation are compared in some aspects.
The original variables have been generated by the following factor model:

m
y. = b. x

k
+ e. ,

Here yi is a manifest variable, xk a common factor, ei a unique factor and
bik a factor loading. The model may now be realized in various ways. I
have chosen to make xk and e. (p + m in number) independent of each other.
Also, all xk are called stanine variables (approximatively normally
distributed on the integers 1(1)9), all ei are rectangularly distributed on
the interval (0, 2) and bik > 0. This gives all yi > 0, symmetrically distributed
with negative kurtosises, a distribution rather common within behavioural
sciences. The linear correlation between yi a.nd Y. .

is now

(3)

3 . 8 4 k , bikbjk

(3.84 L., b + 0.33) (3.84 \/k
j:

b2.k + 0. 33)

A a value aimed at can be obtained by suitable choices of the factor loadings.
As bik > 0, e. becomes positive, and this is a general fact for several
variable domains. The choice of identical ei implies the rank correlation
between communality and variance of yi to be unity. However, I do not
think that this restriction makes the results less general.

For every collection of variables there remains, among other things,
the choice of m, p and P. As the number of factor loadings, which must be
determined for a given collection, is mp, I have put some restrictions on the
choice of ? because of the amount of work involved: it is fixed to 10 and 30.



- 5 -

Ten manifest variables constitute a small number as far as factor analyses
used in behavioural research are concerned, while thirty is a more common,
though not especially large number. Then m has been chosen to indicate
either a small or large number of factors: for p = 10, m = i or 4 and for
p = 30, m = 4 or 10. For these four cases I have chosen correlation
matrices in three ways: 0.0 < e < 0. 4, 0.0< e < 0.9 and 0.5< < 0.9.

The factor-analytic method used here is the principal axes solution
with varimax rotation according to the program 13MDX72, Dixon (1970).
I think that this method is too much used. Whether this depends on tradition
(most earlier analyses built upon the centroid method with graphical rota-
tions to simple structures, of which the method of 13MDX72 is a modern
variant), easily available programs- or difficulties in understanding newer
methods may be left an open question. As is clear from e.g. Joreskog's
papers the newer, inferential methods of factor analysis are more stringent
and flexible than the older ones aiici will, in my opinion, dominate future
uses of factor analysis. Todav-they are more or less limited because of
computers having insufficient internal memories. For instance, the
maximal number of variables which can be analyzed is not seldom too small
for applicationS within behavioural science. Inertia of innovation may be
added to this: the inferential factor analysis puts some new demands on the
user.

Although I could have used programs like ACOVS or LISREL, see e.g.
JOreskog (1973) and Soreskog & van Thillo (1973), I3MDX72 has been used,
for two reasons. Partly .because it is easily available but, above all,
because so many researchers-have used it (or more correctly: its parallel
13MDO3N1). I do not think that results would have been essentially different,
as far as the robustness of the estimates of parameters of the factc:
model is concerned, with a method other than that of BMDX72.

The program has- been mu.: twice for every case, partly with 1.0 and
)

partly with squared multiple correlations (R")-in the principal diagonal
of-the-correlation matrix. There are a total of 24 factor analyses-On
UntranSformed (original) yariables,.%:vhicia- are designed as a.-2x2k3x2 faCtorial
experiment. -IIoWever,-: there a re only -12 differcint :eolle.ctions of variables
generated. since the two types of values in the principal diagonal t re used
for the same generation. Table 1 shows the design with the numbering of
cases which will be used when reporting the results.



Table I. Numbering of the different cases

= t 0 p= 30
m = 10m = t m= 4 m . 4

e0.0 < < 0,4 R to 4A 7A 10A
1.0 1B 4B 713 108

e0.0 < < 0.9 R2 2A 5A 8A I IA
1.0 28 513 88 1113

e0.5 < < 0. R`? 3A 6A 9A 1 2A

1.0 3B 613 913 12B

Formula 4 is exactly valid when we have an infinite number of measurement
objects and will be approxin-iative when only a small number of objects is
available. For instance, the factor variance is not exactly 3.84 and the
factors are not exactly independent of each other. This implies that you
cannot, in practice, obtain exactly the e values aimed at, e.g. 2 = 0. 0
may very well be realized as -0.1. A compromise has to be made between
reasonable costs for computer time and a sufficient number of objects to
approximate the model. Trial runs with 50, 100 and 200 objects showed
that only 200 objects give acceptable agreements between model and data.
Each of the 24 cases shown in table t is thus based on 200 measurement
objects, a rather common sample size within educational research. The
cases have been generated twice in order to get an idea of random variation
at 200 objects. Information about this variation will be used when reporting
the result.

The number of possible transformations is infinite. With regard to
computer time and the amount of work when comparing factor analyses,
the number must be strongly limited. My choice is hardly very rational or
systematic: I do not even know !io-w it could he made so. Positively skewed
distributions are not unusual and it is sometimes recommended that these
should be normalized through square root or logarithmic transformations.
These functions have been exploited, as well as their inverse functions.
As an example of a more general monotonic transformation, I have used
rank numbers instead of the original scores. Finally, one non-monotonic
transformation has also been chosen. Such transformations are sometimes
used, e.g. absolute deviation from an ideal point on a scale.

The 12 untransformed cases (24 factor analyses) have given rise to four
new transformed sets. For one set, half of the variables (those with odd
numbers) have been transformed from v into y2 /1 0 , while the other variables
have been transformed from y For a second set, the corresponding
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functions are exp (y/6) and In (t+y) and in a third set all variables have
been ranked. The set involving non-monotonic transformations uses z 2

=

[(y - m
Y

),/s
Y-I
I a for half of the variables of a case and leaves the other half

unchanged. Fvery set comprises 24 factor analyses as every case is run
twice, both with R2 and 1. 0 in the principal diagonal of the correlation
matrix. Thus there are totally 144 factor analyses (the untransformed set
is gene rated twice).

The way of comparing results of factor analyses is not self-evident.
What is meant by saying that two analyses give essentially the same answer?
Which aspects are to be compared and how? An important interpretation of
"the same answer" is that different researchers understand the factors in
a similar way. This configurational invariance is in most cases sufficient,
The drawback of simulated data is the impossibility of empirically inter-
preting factors: data are, so to say, without content. One then has to
examine numerical invariance by calculating different indices for deviation.
This is a more rigorous comparison: e.g. numerical invariance of factor
loadings implies.configurational invariance but the reverse need not be
true.

Comparisons will be concentrated on eigenvalues: the number of factors
with eigenvalues above 1.0 (a common criterion used when rotating factors),
the proportion of total variance accounted for by these factors and, above
all, the distribution of eigenvalues of unrotated factors. Comparisons of
cornmunalities will also be commented upon, while factor loadings are
discussed rather little. The other comparisons should still give the reader
an understanding of the influence of the transformations.

RESULTS

The numbering of cases which was shown in table 1 is used in the following
tables. The six sets of cases will be numbered by Roman numerals: I and II
stand for the untransformed sets, TIT concerns the transformations y2 /t0
and V y, IV refers to -exp y/61 and In (1+y), V comprises the rank numbers
and VI denotes the set with non-Monotonic transformations. Set I has been
used when generating the transformed sets. Comparisons between set I and
sets III, IV, V and VI are therefore the most important ones. However,
comparisons between I and II give you a hint of the size of random variations
and can be exploited for discussions of the other comparisons.

The first aspect of comparison concerns the number of unrotated factors
with eigenvalues greater than- 1.0. This is a"blind" criterion which is often,



perhaps too often, used when determining the number of factors to rotate,
If you have no prior idea about the number of interpretable factors, it is
perhaps wiser to examine more than one solution. It is far from certain that
a factor with an eigenvalue of 1. 5 can be given any interpretation, while I
have sometimes seen how a factor with an eigenvalue below 1.0 has contribu-
ted essentially to the understanding of a variable domain. Dempster (1969,
p. 139) has a similar, though more extreme attitude concering component
analysis.

Table 2 gives the numbers of unrotated factors with eigenvalues exceeding
1.0 and table .3 shows the proportion of total variance which these factors
represent. It is clear from these tables that III, IV and V are in very good
agreement with I, and the difference between I and II is also small. As might
have been expected, VI shows greater deviation. The number of factors to
rotate is, with one exception, equal to or greater than that for I, but in spite
of this fact the proportion is often lesser for VI than for I. Thus, set VI
has a flatter eigenvalue distribution than I, which is reasonable with regard
to formulas 1 and 2. However, not even as extreme a transformation as VI
comprises can be said to produce very great differences. But tables 2 and 3
present very rough measures: they tell rather little about similarities or
differences between corresponding factors of two sets.
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Table 2. Number of factors with eigenvalues above 1. 0

Case Set
II III IV V VI

1A, 1 1 1 1 1 1

1B 3 3 3 3 3 4
2A 1 1 1 1 1 a
2B 1 2 j 1 1 1 3

3A 1 I , 1 1 1 2

38 1. 1 j 1 1 1 a
4A 1 1 1 1 1 1

_.,

4B 3 4 3 3 3 J 4

25A 1 1 1 1 1

513 2 2 2 2 2 3

6A 1' 1 1 1 1 2

68 i 1 1 1 1 2

7A 2 2 2 2 2 2

713 9 10 10 9 10 13
8A 2 2

;
2 2 2 2

8B j 5 5 1 5 5 5 7

9A 2 i 2 2 2 2 2

9B 2 3 2 2 2 4
10A 2 2 a a 2 2

10B 11 10 10 11 11 11

11,E 3 4 3 3 3 2

11B 5 5 5 5 b 7

12A 3 5 3 3 3 4
1213 5 5 5 5 5 6
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Table 3, Proportion of total variance for factors with eigenvalues above 1. 0

.
Case Set

I II T. III I IV V VI

IA 0, 222 0, 162 y 0.213 , 0 . 2 14 O. 210 0, 124

113 0.515 0.471 1 0.507 1 0. 508 0.505 0. 553

2A 0. 610 0, 618 O. 593 O. 594 0. 598 0, 501

213 0. 638 0. 742 0. 622 0, 625 0. 626 I 0, 690

3A 0. 744 O. 754 0. 716 0. 722 0, 721 j 0. 640
313 0. 768 0. 777 1 0. 742 0. 748 0. 745 0. 710

4A 0. 210 0. 205 O. 209 0. 209 0, 194 0. 104
13 0. 504 0. 607 O. 502 0. 503 0, 489 0. 544
5A 0, 538 0, 537 0. 534 0. 526 0, 522 0. 424
5B 0. 679 0. 681 0. 677 0. 670 0. 664 O. 630

6A 0. 686 0. 674 0, 677 0, 672 0. 662 0. 572

613 O. 711 0. 700 0. 704 0. 700 O. 690 0, 659

7A 1 0. 211 0, 230 0. 209 0, 211 0. 192 0. 139

7B 0. 633 0. 606 0. 590 0. 559 0. 639 0. 643

8A 1 0.586 : 0.592 0. 5-,9 0.575 0.564 0. 465

813 I 0. 727 0. 731 0, 722 O. 718 O. 708 0. 687

9A 0. 741 0. 712 0. 734 0, 727 O. 729 0. 606

913 0. 753
...

0, 762 O. 746 0. 740 0.741 0.703
10A 0. 212 0, 235 0.210 0. 211 O. 195 0. 129

1013 0. 622 i 0. 604 0. 587 0. 622 0. 609 0. 568

11A O. 567 0, 595 O. 561 0. 555 0. 533 O. 429

1113 0. 674 0. 672 0. 669 0. 664 0. 678 0. 662

12A 0. 704 1 0.764 0. 699 0, 689 0. 692 O. 549

1213 0. 799 1 0. 797 : 0. 795 0. 787 0. 787
.1

0. 681

Only the first five eigenvalues of unrotated factors ha% e been exploited for
comparisons of eigenvalue distributions. The deviations of the subsequent
eigenvalue pairs arc small throughout: the greatest deviation almost always
belongs to the first eigenvalue pair. The sum of the absolute differences of
the first five eigenvalue pairs is presented as an index of deviation. The sum
is then. of course, an upper limit for individual differences and it has been
calculated for differences between eigenvalues of set I and those in II, III, IV,
V and VI, These sums are given in table 4 with certain summaries in table 5.

The transformations of III and IV almost always cause small deviations,
smaller than those of a new data generation (set II). Set V involves deviations
of the same magnitudes as for It, sometimes somewhat smaller and sometimes
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a bit greater. The non monotonic transformation of VI on the other hand given
rise to great deviations. These depend mainly on the fact that the first factor
for every case of I has great loadings on most variables, while, for VI, the
first factor has only great loadings on y variables and the second factor is
defined by the z

Y

variables. Those variables, which have been transformed
2from y to z
Y

consequently measure something else now,

Table 4. Eigenvalue deviation from set I

i Case -Set
II III r IV 1 V VI

L...
' IA 0,724 O. 145 0.115 0.163 1.188

113 0.701 0,138 0.094 0.179 1.439
2 0.174 0.244 0.218 0.249

r

4.422
213 i 0.246 0.222 0.163 0.231 4.899
3A

1
0.118 0,392 0.318 0,303 5,969

313 0.156 0,447 0.326 0.361 6.527
4.1 0.222 0,043 0. 024 0.202 1,299
413 ' 0.160 0.026 0,012 0.194 1.211

5A
t

0.102 0.070 0.169 0.245 3.970
513 0,158 0.034 0. 112 0, 235 4.383

L..._ 0,170 0,146 0, 253 0.292 5.088___6A
________

613

t

0.2.57 0.119 0. 176 0.351 5.873
7A 0. 637 0. 101 0. 087 0.62,6 2. 664

713 0. 587 0. 083 0. 075 0. 638 2. 802

8A 0.653 0.243 0.367 0.722 12. 620

, 811 0.309 0. 252 0. 345 0. 724 12.504,---
9A 1.316 0.271 0.598 0.509 16.464
913 ' 1.464 0. 2b0 0. 476 0. 499 # 16.997

10A 1.322 0,068 0. 031 0,514 j 2.550
1013 1.338 0.080 0.031 0.530 2.638
I IA 0.934 0.208 0.429

0.306
1. 167

1.219
10.223
10.2391 1 ti 0.741 I O. 169

12A 1,279 0,151 0.456 0.482 11. 009
12B 1.261 0,146 i 0.4.J6 0.481 11,760



According to table 5 the average deviation, for a given set, is the same
irrespective of whether R or 1.0 has been used. There is an indication of
greater random orror with more variables (comparison and that VI _

and perhaps also V deviate more for p 30 than for p 10. It seems to have
no importance whether, the number of factors is small or great. For III,
IV and VI, transformations have a greater influence on high than on low
correlations, which seems reasonable considering formulas l and 2. How-
ever, we must not forget that the transformations of IIi and IV have almost
no influence: factor analysis on v or e. g. y gives in principle the same
result.

Table 5. Summary of table

ISurnma ry
II

Diagonal
'$value 1.0

10

0.639
0.615 I

rtl

0.266
30 0.988
low 0.590
h h 0.664

--,

low 0,7 i 1

medium

Total

0,418
high , 0.752

1 0.627 i

Set
-I- IN'

0.173
0.165 0.213

V VI

0.456 6,455
0.470 6.774

0.169 0.165 0.250 3.856
0,169 0.303 0.676 9.374
0,233 0.265 0.434 7.375

-t----

0.105 0.203 0.492 5.855
0.086 0,059 0.381 1.976

0.180 0.264 0,599 7.908
0.242 0.380 0.409 9.961
0,169 I 0.234 j O. 463 6.615

And now some words about the squared multiple correlation between yi
and xi xm, the so called L ommunality (r1). It is known (see e.g.
Rozeboorn, 1966, p. 260 that the squared multiple correlation between yi

and p
when these

quantities are based on an infinite number of objects, The relation may be
another in a sample and I have examined whether the sample value of Pi2 ,

which is an estimate of ri often used. seems to be good for this purpose.
The communality is known for I and II and I have looked through set I with

the result that R." presumably can be said to constitute a reasonable estimate
of r,. Few differences are greater than 0,10 and R.2 - P. is greatest for low
-2 -?values, because the bias R. - P`: is then not negligible.

A simple investigation of whether the transformations change has also

been made. But is not kno.k.-n for the transformed sets and comparisons



- 13 -

have therefore been made on sample values calculated from the factor
loading matrix. (The matrix has m factors, except for the cases with
m = 10, where only five factors have been used.) The same pattern as for
eigenvalues comes back. The monotonic transformations have hardly any
influence but the non-monotonic does. Deviations over 0.05 are rare for III,
IV and V, while deviations of 0. 20 are not unusual for VI: maximal deviation
per case varies here between 0. ?.2 and 0.84.

Though eigenvalues and commonalities do not deviate from each other
(comparisons I-III, I-IV and I-V) this does not usually imply that factor
loadings must be similar too. However, a superficial inspection of these
(for unrotated factors) shows no new picture. Factor loadings of set I are
for every case similar to corresponding loadings of sets III, IV and V:
a difference over a, 10 is a rarity. On the other hand, loadings are differently
structured in VI and great differences are common. There is therefore
reason to presume that factors of I, III, IV and V - but not of VI - would
have been interpreted in similar ways if the variables had had some
empirical anchoring.

DISCUSSION

As I see it, a measurement process consists of three stages: a definition
of a property, a choice of an instrument and the allocation of numbers
to the possible outcomes of the instrument. In some areas researchers
have been able to agree upon a definition of a property so precise that all
admissible combinations of instruments and numbers determine linearly
related variables. This is hardly the case in educational research. I believe
that the definitions are here sometimes so diffuse that possible combinations
made by researchers, believing in the same definition, generate variables,
which are not even monotonically related in their specific true scores. That
is, the difference in one true sk ore variable has not the same sign as the
difference in another true score variable for any pair of objects. I have
sometimes heard pronouncements like "this is probably only an ordinal
scale" Just as if it should be self-evident that a variable represents a propert1
according to the requirements of the ordinal scale. Strictly speaking, the
pronouncement is a contradiction e. g. every time a researcher constructs
two alternative instruments for measuring a property and does not find the
two true score variables monotonically related, in-the sense that both
instruments do not produce ordinal scales for the same property.

However, it may well also be so that stochastic relations, which
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essentially approximate monotonic relations (e, g. 90 per cent of pairs of
objects have differences with the same sign for two variables), are sufficient
for several analytical purposes But this robustness of results based on
different collections of variables is something that we know rather little
about. What we would like to know is in which situations robustness occurs -

and does not occur. This information could then be used to focus our efforts
to improve measurements for situations where robustness does not exist.
We may imagine a two-dimensional contingency table with different properties
as columns and different statistical methods as rows and where every cell
can be said to define a situation, My presumption is that some methods are
more robust than others, e. g. a linear product-moment correlation seems
to be much more scale independent than a statistical test about equal
covariance matrices. Likewise, properties may also vary in robustness:
diffusely defined properties generate less robustness because the admissible
choices of variables are so great. This would mean that some properties may
be sufficiently well defined for certain methods but not for others. A wise
selection of methods and properties could form a basis for a research program
of empirical investigations of robustness.

My simulation experiment is not tied to certain properties but to one
method and thus more or less mirrors the conditions for a whole row of the
above-mentioned contingency table. In that it is presumably more general
than an empirical investigation. On the other hand, the experiment involves
the restriction of only examining non-stochastic relations, which means that
it primarily treats the robustness of the third stage of the measurement
process: the allocation of numbers, given a certain collection of instruments.
The special choices of factor-analytic method, ways of comparison and trans-
formations may also restrict the generalizability of this investigation. I will
briefly comment upon these choices.

The question as to whether another method of factor analysis would have
produced different results seems to be difficult to answer. I would like to
answer in the negative, but this is only what I believe. In my experience,
several descriptive methods seem to be rather robust to many (but not
necessarily all) monotonic transformations, While inferential methods need
not be, More exactly: several estimates are often little dependent on the
form of the distribution, but the probabilistic evaluation of a statistical test
quantity can be very sensitive to different kinds of distribution functions. I
therefore believe that the results obtained in this report would not have been
essentially different if the estimates had been produced by another technique,
say maximdril likelihood factor analysis.
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Man has a limited conception of multidimensional phenomena, at least
if they involve more than three dimensions. One may argue that it is rather
meaningless to present descriptions more or less void of characteristics
that can be exploited, even if they are of interest to statistical theory, (For
instance, I find the determinant of a covariance matrix much less under-
standable than its trace.) It is not easy to see what kinds of comparisons
will be the most fruitful ones to undertake in factor analysis, especially
since simulated data have no empirical anchoring. I have chosen to focus
the comparisons on some characteristics commonly used in factor analysis.
The evaluation of the comparisons between untransformed and transformed
data has also been facilitated by a second generation of data (set II). Since
all the comparisons made seem to tell the same story there are reasons to
believe that other numerical comparisons would not have altered the results.
But it would be valuable to supplement this report with parallel investigations
on real data in order to elucidate the influence of transformations on the
interpretation of factors.

Larsson (1973) gives an example 'where a correlation has been considerably
changed by monotonic transformations. Similar results have been obtained by
others, e.g. Box & Cox (1964) or Kruskal (1965). It is not easy to state under
what conditions correlations can be changed much or little by monotonic
transformations, but I suppose that there exist correlation matrices containin,
several correlations which can be changed appreciably so that the factor
structure will also change. I have no idea at all whether this happens
frequently or not. We must not forget that I have chosen some rather common
monotonic transformations independent of data. They are certainly not
optimal in the sense that they change the factor structure as much as possible
On the other hand, it may well be so that in many cases the maximal
change is negligible. (Notice that the robustness of data to the rank transfor-
mation does not imply robustness to any monotonic transformation. The
rank transformation is dependent on the distribution, e. g. a rectangular
distribution implies no change at all.) Therefore it is perhaps wisest to state
a conditional conclusion: the monotonic transformations used show hardly
any non-robustness of factor analysis.

If the results obtained in this study should occur often, methods
like nonmetric and nonlinear factor analyses (see e.g. Lingoes & Guttman,
-1967; Carroll, 1972, and McDonald, 1962) would seldom be necessary.
This is in line with what Shepard (1972, p. 37) says about-his and Kruskal's
nonmetric variety of factor analysis: " it has never been widely used. ...
the method tends-except in the case of extremely nonlinear data - to
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yield representations that differ but little from those obtained by classical
(linear} factor analysis."
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